

About this help file
This file was made with the help of Makertf 1.04 from the input file
../../gas-980103/etc/standards.texi.

START-INFO-DIR-ENTRY
* Standards: (standards).                GNU coding standards.
END-INFO-DIR-ENTRY

GNU Coding Standards Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software
Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the Free Software Foundation.   

Node: Top, Next: Preface, Prev: (dir), Up: (dir) About this help file

GNU Coding Standards
by Richard Stallman and last updated 16 January 1997

Version
Last updated 16 January 1997.   

* Menu:

Preface About the GNU Coding Standards
Intellectual Property Keeping Free Software Free
Design Advice General Program Design
Program Behavior Program Behavior for All Programs
Writing C Making The Best Use of C
Documentation Documenting Programs
Managing Releases The Release Process

Node: Preface, Next: Intellectual Property, Prev: Top, Up: Top

About the GNU Coding Standards
The GNU Coding Standards were written by Richard Stallman and other GNU Project
volunteers.    Their purpose is to make the GNU system clean, consistent, and easy to install. 
This document can also be read as a guide to writing portable, robust and reliable programs. 
It focuses on programs written in C, but many of the rules and principles are useful even if
you write in another programming language.    The rules often state reasons for writing in a
certain way.

Corrections or suggestions regarding this document should be sent to
gnu@prep.ai.mit.edu.    If you make a suggestion, please include a suggested new wording
for it; our time is limited.    We prefer a context diff to the standards.texi or make-
stds.texi files, but if you don't have those files, please mail your suggestion anyway.

This release of the GNU Coding Standards was last updated 16 January 1997.

Node: Intellectual Property, Next: Design Advice, Prev: Preface, Up: Top

Keeping Free Software Free
This node discusses how you can make sure that GNU software remains unencumbered.

* Menu:

Reading Non-Free Code Referring to Proprietary Programs
Contributions Accepting Contributions

Node: Reading Non-Free Code, Next: Contributions, Prev: , Up: Intellectual Property

Referring to Proprietary Programs
Don't in any circumstances refer to Unix source code for or during your work on GNU!    (Or
to any other proprietary programs.)

If you have a vague recollection of the internals of a Unix program, this does not absolutely
mean you can't write an imitation of it, but do try to organize the imitation internally along
different lines, because this is likely to make the details of the Unix version irrelevant and
dissimilar to your results.

For example, Unix utilities were generally optimized to minimize memory use; if you go for
speed instead, your program will be very different.    You could keep the entire input file in
core and scan it there instead of using stdio.    Use a smarter algorithm discovered more
recently than the Unix program.    Eliminate use of temporary files.    Do it in one pass instead
of two (we did this in the assembler).

Or, on the contrary, emphasize simplicity instead of speed.    For some applications, the
speed of today's computers makes simpler algorithms adequate.

Or go for generality.    For example, Unix programs often have static tables or fixed-size
strings, which make for arbitrary limits; use dynamic allocation instead.    Make sure your
program handles NULs and other funny characters in the input files.    Add a programming
language for extensibility and write part of the program in that language.

Or turn some parts of the program into independently usable libraries.    Or use a simple
garbage collector instead of tracking precisely when to free memory, or use a new GNU
facility such as obstacks.

Node: Contributions, Next: , Prev: Reading Non-Free Code, Up: Intellectual Property

Accepting Contributions
If someone else sends you a piece of code to add to the program you are working on, we
need legal papers to use it--the same sort of legal papers we will need to get from you.   
Each significant contributor to a program must sign some sort of legal papers in order for us
to have clear title to the program.    The main author alone is not enough.

So, before adding in any contributions from other people, tell us so we can arrange to get
the papers.    Then wait until we tell you that we have received the signed papers, before you
actually use the contribution.

This applies both before you release the program and afterward.    If you receive diffs to fix a
bug, and they make significant changes, we need legal papers for it.

You don't need papers for changes of a few lines here or there, since they are not significant
for copyright purposes.    Also, you don't need papers if all you get from the suggestion is
some ideas, not actual code which you use.    For example, if you write a different solution to
the problem, you don't need to get papers.

We know this is frustrating; it's frustrating for us as well.    But if you don't wait, you are
going out on a limb--for example, what if the contributor's employer won't sign a disclaimer? 
You might have to take that code out again!

The very worst thing is if you forget to tell us about the other contributor.    We could be very
embarrassed in court some day as a result.

Node: Design Advice, Next: Program Behavior, Prev: Intellectual Property, Up: Top

General Program Design
This node discusses some of the issues you should take into account when designing your
program.

* Menu:

Compatibility Compatibility with other implementations
Using Extensions Using non-standard features
ANSI C Using ANSI C features
Source Language Using languages other than C

Node: Compatibility, Next: Using Extensions, Prev: , Up: Design Advice

Compatibility with Other Implementations
With occasional exceptions, utility programs and libraries for GNU should be upward
compatible with those in Berkeley Unix, and upward compatible with ANSI C if ANSI C specifies
their behavior, and upward compatible with POSIX if POSIX specifies their behavior.

When these standards conflict, it is useful to offer compatibility modes for each of them.

ANSI C and POSIX prohibit many kinds of extensions.    Feel free to make the extensions anyway,
and include a --ansi, --posix, or --compatible option to turn them off.    However, if the
extension has a significant chance of breaking any real programs or scripts, then it is not
really upward compatible.    Try to redesign its interface.

Many GNU programs suppress extensions that conflict with POSIX if the environment
variable POSIXLY_CORRECT is defined (even if it is defined with a null value).    Please make
your program recognize this variable if appropriate.

When a feature is used only by users (not by programs or command files), and it is done
poorly in Unix, feel free to replace it completely with something totally different and better.   
(For example, vi is replaced with Emacs.)    But it is nice to offer a compatible feature as
well.    (There is a free vi clone, so we offer it.)

Additional useful features not in Berkeley Unix are welcome.    Additional programs with no
counterpart in Unix may be useful, but our first priority is usually to duplicate what Unix
already has.

Node: Using Extensions, Next: ANSI C, Prev: Compatibility, Up: Design Advice

Using Non-standard Features
Many GNU facilities that already exist support a number of convenient extensions over the
comparable Unix facilities.    Whether to use these extensions in implementing your program
is a difficult question.

On the one hand, using the extensions can make a cleaner program.    On the other hand,
people will not be able to build the program unless the other GNU tools are available.    This
might cause the program to work on fewer kinds of machines.

With some extensions, it might be easy to provide both alternatives.    For example, you can
define functions with a "keyword" INLINE and define that as a macro to expand into either
inline or nothing, depending on the compiler.

In general, perhaps it is best not to use the extensions if you can straightforwardly do
without them, but to use the extensions if they are a big improvement.

An exception to this rule are the large, established programs (such as Emacs) which run on a
great variety of systems.    Such programs would be broken by use of GNU extensions.

Another exception is for programs that are used as part of compilation: anything that must
be compiled with other compilers in order to bootstrap the GNU compilation facilities.    If
these require the GNU compiler, then no one can compile them without having them
installed already.    That would be no good.

Node: ANSI C, Next: Source Language, Prev: Using Extensions, Up: Design Advice

ANSI C and pre-ANSI C
Do not ever use the "trigraph" feature of ANSI C.

ANSI C is widespread enough now that it is ok to write new programs that use ANSI C features
(and therefore will not work in non-ANSI compilers).    And if a program is already written in ANSI
C, there's no need to convert it to support non-ANSI compilers.

However, it is easy to support non-ANSI compilers in most programs, so you might still
consider doing so when you write a program.    Instead of writing function definitions in ANSI
prototype form,

int
foo (int x, int y)
...

write the definition in pre-ANSI style like this,

int
foo (x, y)
 int x, y;
...

and use a separate declaration to specify the argument prototype:

int foo (int, int);

You need such a declaration anyway, in a header file, to get the benefit of ANSI C prototypes
in all the files where the function is called.    And once you have it, you lose nothing by
writing the function definition in the pre-ANSI style.

If you don't know non-ANSI C, there's no need to learn it; just write in ANSI C.

Node: Source Language, Next: , Prev: ANSI C, Up: Design Advice

Using Languages Other Than C
Using a language other than C is like using a non-standard feature: it will cause trouble for
users.    Even if GCC supports the other language, users may find it inconvenient to have to
install the compiler for that other language in order to build your program.    So please write
in C.

There are three exceptions for this rule:

· It is okay to use a special language if the same program contains an interpreter for
that language.

For example, if your program links with GUILE, it is ok to write part of the program in
Scheme or another language supported by GUILE.

· It is okay to use another language in a tool specifically intended for use with that
language.

This is okay because the only people who want to build the tool will be those who
have installed the other language anyway.

· If an application is not of extremely widespread interest, then perhaps it's not
important if the application is inconvenient to install.   

Node: Program Behavior, Next: Writing C, Prev: Design Advice, Up: Top

Program Behavior for All Programs
This node describes how to write robust software. It also describes general standards for
error messages, the command line interface, and how libraries should behave.

* Menu:

Semantics Writing robust programs
Libraries Library behavior
Errors Formatting error messages
User Interfaces Standards for command line interfaces
Option Table Table of long options.
Memory Usage When and how to care about memory needs

Node: Semantics, Next: Libraries, Prev: , Up: Program Behavior

Writing Robust Programs
Avoid arbitrary limits on the length or number of any data structure, including file names,
lines, files, and symbols, by allocating all data structures dynamically.    In most Unix utilities,
"long lines are silently truncated".    This is not acceptable in a GNU utility.

Utilities reading files should not drop NUL characters, or any other nonprinting characters
including those with codes above 0177.    The only sensible exceptions would be utilities
specifically intended for interface to certain types of printers that can't handle those
characters.

Check every system call for an error return, unless you know you wish to ignore errors.   
Include the system error text (from perror or equivalent) in every error message resulting
from a failing system call, as well as the name of the file if any and the name of the utility.   
Just "cannot open foo.c" or "stat failed" is not sufficient.

Check every call to malloc or realloc to see if it returned zero.    Check realloc even if you
are making the block smaller; in a system that rounds block sizes to a power of 2, realloc
may get a different block if you ask for less space.

In Unix, realloc can destroy the storage block if it returns zero.    GNU realloc does not
have this bug: if it fails, the original block is unchanged.    Feel free to assume the bug is
fixed.    If you wish to run your program on Unix, and wish to avoid lossage in this case, you
can use the GNU malloc.

You must expect free to alter the contents of the block that was freed.    Anything you want
to fetch from the block, you must fetch before calling free.

If malloc fails in a noninteractive program, make that a fatal error.    In an interactive
program (one that reads commands from the user), it is better to abort the command and
return to the command reader loop.    This allows the user to kill other processes to free up
virtual memory, and then try the command again.

Use getopt_long to decode arguments, unless the argument syntax makes this
unreasonable.

When static storage is to be written in during program execution, use explicit C code to
initialize it.    Reserve C initialized declarations for data that will not be changed.

Try to avoid low-level interfaces to obscure Unix data structures (such as file directories,
utmp, or the layout of kernel memory), since these are less likely to work compatibly.    If you
need to find all the files in a directory, use readdir or some other high-level interface.   
These will be supported compatibly by GNU.

By default, the GNU system will provide the signal handling functions of BSD and of POSIX.    So
GNU software should be written to use these.

In error checks that detect "impossible" conditions, just abort.    There is usually no point in
printing any message.    These checks indicate the existence of bugs.    Whoever wants to fix
the bugs will have to read the source code and run a debugger.    So explain the problem
with comments in the source.    The relevant data will be in variables, which are easy to
examine with the debugger, so there is no point moving them elsewhere.

Do not use a count of errors as the exit status for a program.    That does not work, because
exit status values are limited to 8 bits (0 through 255).    A single run of the program might
have 256 errors; if you try to return 256 as the exit status, the parent process will see 0 as
the status, and it will appear that the program succeeded.

If you make temporary files, check the TMPDIR environment variable; if that variable is
defined, use the specified directory instead of /tmp.

Node: Libraries, Next: Errors, Prev: Semantics, Up: Program Behavior

Library Behavior
Try to make library functions reentrant.    If they need to do dynamic storage allocation, at
least try to avoid any nonreentrancy aside from that of malloc itself.

Here are certain name conventions for libraries, to avoid name conflicts.

Choose a name prefix for the library, more than two characters long.    All external function
and variable names should start with this prefix.    In addition, there should only be one of
these in any given library member.    This usually means putting each one in a separate
source file.

An exception can be made when two external symbols are always used together, so that no
reasonable program could use one without the other; then they can both go in the same file.

External symbols that are not documented entry points for the user should have names
beginning with _.    They should also contain the chosen name prefix for the library, to
prevent collisions with other libraries.    These can go in the same files with user entry points
if you like.

Static functions and variables can be used as you like and need not fit any naming
convention.

Node: Errors, Next: User Interfaces, Prev: Libraries, Up: Program Behavior

Formatting Error Messages
Error messages from compilers should look like this:

source-file-name:lineno: message

Error messages from other noninteractive programs should look like this:

program:source-file-name:lineno: message

when there is an appropriate source file, or like this:

program: message

when there is no relevant source file.

In an interactive program (one that is reading commands from a terminal), it is better not to
include the program name in an error message.    The place to indicate which program is
running is in the prompt or with the screen layout.    (When the same program runs with
input from a source other than a terminal, it is not interactive and would do best to print
error messages using the noninteractive style.)

The string message should not begin with a capital letter when it follows a program name
and/or file name.    Also, it should not end with a period.

Error messages from interactive programs, and other messages such as usage messages,
should start with a capital letter.    But they should not end with a period.

Node: User Interfaces, Next: Option Table, Prev: Errors, Up: Program Behavior

Standards for Command Line Interfaces
Please don't make the behavior of a utility depend on the name used to invoke it.    It is
useful sometimes to make a link to a utility with a different name, and that should not
change what it does.

Instead, use a run time option or a compilation switch or both to select among the alternate
behaviors.

Likewise, please don't make the behavior of the program depend on the type of output
device it is used with.    Device independence is an important principle of the system's
design; do not compromise it merely to save someone from typing an option now and then.

If you think one behavior is most useful when the output is to a terminal, and another is
most useful when the output is a file or a pipe, then it is usually best to make the default
behavior the one that is useful with output to a terminal, and have an option for the other
behavior.

Compatibility requires certain programs to depend on the type of output device.    It would be
disastrous if ls or sh did not do so in the way all users expect.    In some of these cases, we
supplement the program with a preferred alternate version that does not depend on the
output device type.    For example, we provide a dir program much like ls except that its
default output format is always multi-column format.

It is a good idea to follow the POSIX guidelines for the command-line options of a program.   
The easiest way to do this is to use getopt to parse them.    Note that the GNU version of
getopt will normally permit options anywhere among the arguments unless the special
argument -- is used.    This is not what POSIX specifies; it is a GNU extension.

Please define long-named options that are equivalent to the single-letter Unix-style options.   
We hope to make GNU more user friendly this way.    This is easy to do with the GNU function
getopt_long.

One of the advantages of long-named options is that they can be consistent from program to
program.    For example, users should be able to expect the "verbose" option of any GNU
program which has one, to be spelled precisely --verbose.    To achieve this uniformity, look
at the table of common long-option names when you choose the option names for your
program (see Option Table).

It is usually a good idea for file names given as ordinary arguments to be input files only;
any output files would be specified using options (preferably -o or --output).    Even if you
allow an output file name as an ordinary argument for compatibility, try to provide an option
as another way to specify it.    This will lead to more consistency among GNU utilities, and
fewer idiosyncracies for users to remember.

All programs should support two standard options: --version and --help.

--version
This option should direct the program to information about its name, version, origin
and legal status, all on standard output, and then exit successfully.    Other options
and arguments should be ignored once this is seen, and the program should not
perform its normal function.

The first line is meant to be easy for a program to parse; the version number proper
starts after the last space.    In addition, it contains the canonical name for this
program, in this format:

GNU Emacs 19.30

The program's name should be a constant string; don't compute it from argv[0].   
The idea is to state the standard or canonical name for the program, not its file name.
There are other ways to find out the precise file name where a command is found in
PATH.

If the program is a subsidiary part of a larger package, mention the package name in
parentheses, like this:

emacsserver (GNU Emacs) 19.30

If the package has a version number which is different from this program's version
number, you can mention the package version number just before the close-
parenthesis.

If you need to mention the version numbers of libraries which are distributed
separately from the package which contains this program, you can do so by printing
an additional line of version info for each library you want to mention.    Use the same
format for these lines as for the first line.

Please don't mention all the libraries that the program uses "just for completeness"--
that would produce a lot of unhelpful clutter.    Please mention library version
numbers only if you find in practice that they are very important to you in debugging.

The following line, after the version number line or lines, should be a copyright
notice.    If more than one copyright notice is called for, put each on a separate line.

Next should follow a brief statement that the program is free software, and that users
are free to copy and change it on certain conditions.    If the program is covered by
the GNU GPL, say so here.    Also mention that there is no warranty, to the extent
permitted by law.

It is ok to finish the output with a list of the major authors of the program, as a way of
giving credit.

Here's an example of output that follows these rules:

GNU Emacs 19.34.5
Copyright (C) 1996 Free Software Foundation, Inc.
GNU Emacs comes with NO WARRANTY, to the extent permitted by law.
You may redistribute copies of GNU Emacs
under the terms of the GNU General Public License.
For more information about these matters, see the files named
COPYING.

You should adapt this to your program, of course, filling in the proper year, copyright
holder, name of program, and the references to distribution terms, and changing the
rest of the wording as necessary.

This copyright notice only needs to mention the most recent year in which changes
were made--there's no need to list the years for previous versions' changes.    You
don't have to mention the name of the program in these notices, if that is
inconvenient, since it appeared in the first line.

--help
This option should output brief documentation for how to invoke the program, on
standard output, then exit successfully.    Other options and arguments should be
ignored once this is seen, and the program should not perform its normal function.

Near the end of the --help option's output there should be a line that says where to
mail bug reports.    It should have this format:

Report bugs to mailing-address.

Node: Option Table, Next: Memory Usage, Prev: User Interfaces, Up: Program Behavior

Table of Long Options
Here is a table of long options used by GNU programs.    It is surely incomplete, but we aim
to list all the options that a new program might want to be compatible with.    If you use
names not already in the table, please send gnu@prep.ai.mit.edu a list of them, with their
meanings, so we can update the table.

after-date
-N in tar.

all
-a in du, ls, nm, stty, uname, and unexpand.

all-text
-a in diff.

almost-all
-A in ls.

append
-a in etags, tee, time; -r in tar.

archive
-a in cp.

archive-name
-n in shar.

arglength
-l in m4.

ascii
-a in diff.

assign
-v in gawk.

assume-new
-W in Make.

assume-old
-o in Make.

auto-check
-a in recode.

auto-pager
-a in wdiff.

auto-reference
-A in ptx.

avoid-wraps
-n in wdiff.

backward-search
-B in ctags.

basename
-f in shar.

batch
Used in GDB.

baud
Used in GDB.

before
-b in tac.

binary
-b in cpio and diff.

bits-per-code
-b in shar.

block-size
Used in cpio and tar.

blocks
-b in head and tail.

break-file
-b in ptx.

brief
Used in various programs to make output shorter.

bytes
-c in head, split, and tail.

c++
-C in etags.

catenate
-A in tar.

cd
Used in various programs to specify the directory to use.

changes
-c in chgrp and chown.

classify
-F in ls.

colons

-c in recode.

command
-c in su; -x in GDB.

compare
-d in tar.

compat
Used in gawk.

compress
-Z in tar and shar.

concatenate
-A in tar.

confirmation
-w in tar.

context
Used in diff.

copyleft
-W copyleft in gawk.

copyright
-C in ptx, recode, and wdiff; -W copyright in gawk.

core
Used in GDB.

count
-q in who.

count-links
-l in du.

create
Used in tar and cpio.

cut-mark
-c in shar.

cxref
-x in ctags.

date
-d in touch.

debug
-d in Make and m4; -t in Bison.

define
-D in m4.

defines
-d in Bison and ctags.

delete
-D in tar.

dereference
-L in chgrp, chown, cpio, du, ls, and tar.

dereference-args
-D in du.

diacritics
-d in recode.

dictionary-order
-d in look.

diff
-d in tar.

digits
-n in csplit.

directory
Specify the directory to use, in various programs.    In ls, it means to show directories
themselves rather than their contents.    In rm and ln, it means to not treat links to
directories specially.

discard-all
-x in strip.

discard-locals
-X in strip.

dry-run
-n in Make.

ed
-e in diff.

elide-empty-files
-z in csplit.

end-delete
-x in wdiff.

end-insert
-z in wdiff.

entire-new-file
-N in diff.

environment-overrides

-e in Make.

eof
-e in xargs.

epoch
Used in GDB.

error-limit
Used in makeinfo.

error-output
-o in m4.

escape
-b in ls.

exclude-from
-X in tar.

exec
Used in GDB.

exit
-x in xargs.

exit-0
-e in unshar.

expand-tabs
-t in diff.

expression
-e in sed.

extern-only
-g in nm.

extract
-i in cpio; -x in tar.

faces
-f in finger.

fast
-f in su.

fatal-warnings
-E in m4.

file
-f in info, gawk, Make, mt, and tar; -n in sed; -r in touch.

field-separator
-F in gawk.

file-prefix
-b in Bison.

file-type
-F in ls.

files-from
-T in tar.

fill-column
Used in makeinfo.

flag-truncation
-F in ptx.

fixed-output-files
-y in Bison.

follow
-f in tail.

footnote-style
Used in makeinfo.

force
-f in cp, ln, mv, and rm.

force-prefix
-F in shar.

format
Used in ls, time, and ptx.

freeze-state
-F in m4.

fullname
Used in GDB.

gap-size
-g in ptx.

get
-x in tar.

graphic
-i in ul.

graphics
-g in recode.

group
-g in install.

gzip
-z in tar and shar.

hashsize
-H in m4.

header
-h in objdump and recode

heading
-H in who.

help
Used to ask for brief usage information.

here-delimiter
-d in shar.

hide-control-chars
-q in ls.

idle
-u in who.

ifdef
-D in diff.

ignore
-I in ls; -x in recode.

ignore-all-space
-w in diff.

ignore-backups
-B in ls.

ignore-blank-lines
-B in diff.

ignore-case
-f in look and ptx; -i in diff and wdiff.

ignore-errors
-i in Make.

ignore-file
-i in ptx.

ignore-indentation
-I in etags.

ignore-init-file
-f in Oleo.

ignore-interrupts

-i in tee.

ignore-matching-lines
-I in diff.

ignore-space-change
-b in diff.

ignore-zeros
-i in tar.

include
-i in etags; -I in m4.

include-dir
-I in Make.

incremental
-G in tar.

info
-i, -l, and -m in Finger.

initial
-i in expand.

initial-tab
-T in diff.

inode
-i in ls.

interactive
-i in cp, ln, mv, rm; -e in m4; -p in xargs; -w in tar.

intermix-type
-p in shar.

jobs
-j in Make.

just-print
-n in Make.

keep-going
-k in Make.

keep-files
-k in csplit.

kilobytes
-k in du and ls.

language
-l in etags.

less-mode
-l in wdiff.

level-for-gzip
-g in shar.

line-bytes
-C in split.

lines
Used in split, head, and tail.

link
-l in cpio.

lint
lint-old

Used in gawk.

list
-t in cpio; -l in recode.

list
-t in tar.

literal
-N in ls.

load-average
-l in Make.

login
Used in su.

machine
No listing of which programs already use this; someone should check to see if any
actually do and tell gnu@prep.ai.mit.edu.

macro-name
-M in ptx.

mail
-m in hello and uname.

make-directories
-d in cpio.

makefile
-f in Make.

mapped
Used in GDB.

max-args

-n in xargs.

max-chars
-n in xargs.

max-lines
-l in xargs.

max-load
-l in Make.

max-procs
-P in xargs.

mesg
-T in who.

message
-T in who.

minimal
-d in diff.

mixed-uuencode
-M in shar.

mode
-m in install, mkdir, and mkfifo.

modification-time
-m in tar.

multi-volume
-M in tar.

name-prefix
-a in Bison.

nesting-limit
-L in m4.

net-headers
-a in shar.

new-file
-W in Make.

no-builtin-rules
-r in Make.

no-character-count
-w in shar.

no-check-existing
-x in shar.

no-common
-3 in wdiff.

no-create
-c in touch.

no-defines
-D in etags.

no-deleted
-1 in wdiff.

no-dereference
-d in cp.

no-inserted
-2 in wdiff.

no-keep-going
-S in Make.

no-lines
-l in Bison.

no-piping
-P in shar.

no-prof
-e in gprof.

no-regex
-R in etags.

no-sort
-p in nm.

no-split
Used in makeinfo.

no-static
-a in gprof.

no-time
-E in gprof.

no-timestamp
-m in shar.

no-validate
Used in makeinfo.

no-wait
Used in emacsclient.

no-warn
Used in various programs to inhibit warnings.

node
-n in info.

nodename
-n in uname.

nonmatching
-f in cpio.

nstuff
-n in objdump.

null
-0 in xargs.

number
-n in cat.

number-nonblank
-b in cat.

numeric-sort
-n in nm.

numeric-uid-gid
-n in cpio and ls.

nx
Used in GDB.

old-archive
-o in tar.

old-file
-o in Make.

one-file-system
-l in tar, cp, and du.

only-file
-o in ptx.

only-prof
-f in gprof.

only-time
-F in gprof.

output
In various programs, specify the output file name.

output-prefix

-o in shar.

override
-o in rm.

overwrite
-c in unshar.

owner
-o in install.

paginate
-l in diff.

paragraph-indent
Used in makeinfo.

parents
-p in mkdir and rmdir.

pass-all
-p in ul.

pass-through
-p in cpio.

port
-P in finger.

portability
-c in cpio and tar.

posix
Used in gawk.

prefix-builtins
-P in m4.

prefix
-f in csplit.

preserve
Used in tar and cp.

preserve-environment
-p in su.

preserve-modification-time
-m in cpio.

preserve-order
-s in tar.

preserve-permissions
-p in tar.

print
-l in diff.

print-chars
-L in cmp.

print-data-base
-p in Make.

print-directory
-w in Make.

print-file-name
-o in nm.

print-symdefs
-s in nm.

printer
-p in wdiff.

prompt
-p in ed.

query-user
-X in shar.

question
-q in Make.

quiet
Used in many programs to inhibit the usual output.    Note: every program accepting
--quiet should accept --silent as a synonym.

quiet-unshar
-Q in shar

quote-name
-Q in ls.

rcs
-n in diff.

re-interval
Used in gawk.

read-full-blocks
-B in tar.

readnow
Used in GDB.

recon
-n in Make.

record-number
-R in tar.

recursive
Used in chgrp, chown, cp, ls, diff, and rm.

reference-limit
Used in makeinfo.

references
-r in ptx.

regex
-r in tac and etags.

release
-r in uname.

reload-state
-R in m4.

relocation
-r in objdump.

rename
-r in cpio.

replace
-i in xargs.

report-identical-files
-s in diff.

reset-access-time
-a in cpio.

reverse
-r in ls and nm.

reversed-ed
-f in diff.

right-side-defs
-R in ptx.

same-order
-s in tar.

same-permissions
-p in tar.

save
-g in stty.

se
Used in GDB.

sentence-regexp
-S in ptx.

separate-dirs
-S in du.

separator
-s in tac.

sequence
Used by recode to chose files or pipes for sequencing passes.

shell
-s in su.

show-all
-A in cat.

show-c-function
-p in diff.

show-ends
-E in cat.

show-function-line
-F in diff.

show-tabs
-T in cat.

silent
Used in many programs to inhibit the usual output.    Note: every program accepting
--silent should accept --quiet as a synonym.

size
-s in ls.

sort
Used in ls.

source
-W source in gawk.

sparse
-S in tar.

speed-large-files
-H in diff.

split-at
-E in unshar.

split-size-limit
-L in shar.

squeeze-blank
-s in cat.

start-delete
-w in wdiff.

start-insert
-y in wdiff.

starting-file
Used in tar and diff to specify which file within a directory to start processing with.

statistics
-s in wdiff.

stdin-file-list
-S in shar.

stop
-S in Make.

strict
-s in recode.

strip
-s in install.

strip-all
-s in strip.

strip-debug
-S in strip.

submitter
-s in shar.

suffix
-S in cp, ln, mv.

suffix-format
-b in csplit.

sum
-s in gprof.

summarize
-s in du.

symbolic
-s in ln.

symbols

Used in GDB and objdump.

synclines
-s in m4.

sysname
-s in uname.

tabs
-t in expand and unexpand.

tabsize
-T in ls.

terminal
-T in tput and ul.    -t in wdiff.

text
-a in diff.

text-files
-T in shar.

time
Used in ls and touch.

to-stdout
-O in tar.

total
-c in du.

touch
-t in Make, ranlib, and recode.

trace
-t in m4.

traditional
-t in hello; -W traditional in gawk; -G in ed, m4, and ptx.

tty
Used in GDB.

typedefs
-t in ctags.

typedefs-and-c++
-T in ctags.

typeset-mode
-t in ptx.

uncompress
-z in tar.

unconditional
-u in cpio.

undefine
-U in m4.

undefined-only
-u in nm.

update
-u in cp, ctags, mv, tar.

usage
Used in gawk; same as --help.

uuencode
-B in shar.

vanilla-operation
-V in shar.

verbose
Print more information about progress.    Many programs support this.

verify
-W in tar.

version
Print the version number.

version-control
-V in cp, ln, mv.

vgrind
-v in ctags.

volume
-V in tar.

what-if
-W in Make.

whole-size-limit
-l in shar.

width
-w in ls and ptx.

word-regexp
-W in ptx.

writable
-T in who.

zeros
-z in gprof.   

Node: Memory Usage, Next: , Prev: Option Table, Up: Program Behavior

Memory Usage
If it typically uses just a few meg of memory, don't bother making any effort to reduce
memory usage.    For example, if it is impractical for other reasons to operate on files more
than a few meg long, it is reasonable to read entire input files into core to operate on them.

However, for programs such as cat or tail, that can usefully operate on very large files, it is
important to avoid using a technique that would artificially limit the size of files it can
handle.    If a program works by lines and could be applied to arbitrary user-supplied input
files, it should keep only a line in memory, because this is not very hard and users will want
to be able to operate on input files that are bigger than will fit in core all at once.

If your program creates complicated data structures, just make them in core and give a fatal
error if malloc returns zero.

Node: Writing C, Next: Documentation, Prev: Program Behavior, Up: Top

Making The Best Use of C
This node provides advice on how best to use the C language when writing GNU software.

* Menu:

Formatting Formatting Your Source Code
Comments Commenting Your Work
Syntactic Conventions Clean Use of C Constructs
Names Naming Variables and Functions
System Portability Portability between different operating systems
CPU Portability Supporting the range of CPU types
System Functions Portability and "standard" library functions
Internationalization Techniques for internationalization
Mmap How you can safely use mmap.

Node: Formatting, Next: Comments, Prev: , Up: Writing C

Formatting Your Source Code
It is important to put the open-brace that starts the body of a C function in column zero, and
avoid putting any other open-brace or open-parenthesis or open-bracket in column zero.   
Several tools look for open-braces in column zero to find the beginnings of C functions.   
These tools will not work on code not formatted that way.

It is also important for function definitions to start the name of the function in column zero.   
This helps people to search for function definitions, and may also help certain tools
recognize them.    Thus, the proper format is this:

static char *
concat (s1, s2) /* Name starts in column zero here */
 char *s1, *s2;
{ /* Open brace in column zero here */
 ...
}

or, if you want to use ANSI C, format the definition like this:

static char *
concat (char *s1, char *s2)
{
 ...
}

In ANSI C, if the arguments don't fit nicely on one line, split it like this:

int
lots_of_args (int an_integer, long a_long, short a_short,
 double a_double, float a_float)
...

For the body of the function, we prefer code formatted like this:

if (x < foo (y, z))
 haha = bar[4] + 5;
else
 {
 while (z)
 {
 haha += foo (z, z);
 z--;
 }
 return ++x + bar ();
 }

We find it easier to read a program when it has spaces before the open-parentheses and
after the commas.    Especially after the commas.

When you split an expression into multiple lines, split it before an operator, not after one.   
Here is the right way:

if (foo_this_is_long && bar > win (x, y, z)
 && remaining_condition)

Try to avoid having two operators of different precedence at the same level of indentation.   
For example, don't write this:

mode = (inmode[j] == VOIDmode
 || GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])
 ? outmode[j] : inmode[j]);

Instead, use extra parentheses so that the indentation shows the nesting:

mode = ((inmode[j] == VOIDmode
 || (GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])))
 ? outmode[j] : inmode[j]);

Insert extra parentheses so that Emacs will indent the code properly.    For example, the
following indentation looks nice if you do it by hand, but Emacs would mess it up:

v = rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000
 + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000;

But adding a set of parentheses solves the problem:

v = (rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000
 + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000);

Format do-while statements like this:

do
 {
 a = foo (a);
 }
while (a > 0);

Please use formfeed characters (control-L) to divide the program into pages at logical places
(but not within a function).    It does not matter just how long the pages are, since they do
not have to fit on a printed page.    The formfeeds should appear alone on lines by
themselves.

Node: Comments, Next: Syntactic Conventions, Prev: Formatting, Up: Writing C

Commenting Your Work
Every program should start with a comment saying briefly what it is for.    Example: fmt -
filter for simple filling of text.

Please write the comments in a GNU program in English, because English is the one
language that nearly all programmers in all countries can read.    If you do not write English
well, please write comments in English as well as you can, then ask other people to help
rewrite them.    If you can't write comments in English, please find someone to work with you
and translate your comments into English.

Please put a comment on each function saying what the function does, what sorts of
arguments it gets, and what the possible values of arguments mean and are used for.    It is
not necessary to duplicate in words the meaning of the C argument declarations, if a C type
is being used in its customary fashion.    If there is anything nonstandard about its use (such
as an argument of type char * which is really the address of the second character of a
string, not the first), or any possible values that would not work the way one would expect
(such as, that strings containing newlines are not guaranteed to work), be sure to say so.

Also explain the significance of the return value, if there is one.

Please put two spaces after the end of a sentence in your comments, so that the Emacs
sentence commands will work.    Also, please write complete sentences and capitalize the
first word.    If a lower-case identifier comes at the beginning of a sentence, don't capitalize
it!    Changing the spelling makes it a different identifier.    If you don't like starting a sentence
with a lower case letter, write the sentence differently (e.g., "The identifier lower-case is ...").

The comment on a function is much clearer if you use the argument names to speak about
the argument values.    The variable name itself should be lower case, but write it in upper
case when you are speaking about the value rather than the variable itself.    Thus, "the
inode number NODE_NUM" rather than "an inode".

There is usually no purpose in restating the name of the function in the comment before it,
because the reader can see that for himself.    There might be an exception when the
comment is so long that the function itself would be off the bottom of the screen.

There should be a comment on each static variable as well, like this:

/* Nonzero means truncate lines in the display;
 zero means continue them. */
int truncate_lines;

Every #endif should have a comment, except in the case of short conditionals (just a few
lines) that are not nested.    The comment should state the condition of the conditional that
is ending, including its sense.    #else should have a comment describing the condition and
sense of the code that follows.    For example:

#ifdef foo
 ...
#else /* not foo */
 ...
#endif /* not foo */

but, by contrast, write the comments this way for a #ifndef:

#ifndef foo
 ...
#else /* foo */
 ...
#endif /* foo */

Node: Syntactic Conventions, Next: Names, Prev: Comments, Up: Writing C

Clean Use of C Constructs
Please explicitly declare all arguments to functions.    Don't omit them just because they are
ints.

Declarations of external functions and functions to appear later in the source file should all
go in one place near the beginning of the file (somewhere before the first function definition
in the file), or else should go in a header file.    Don't put extern declarations inside
functions.

It used to be common practice to use the same local variables (with names like tem) over
and over for different values within one function.    Instead of doing this, it is better declare a
separate local variable for each distinct purpose, and give it a name which is meaningful.   
This not only makes programs easier to understand, it also facilitates optimization by good
compilers.    You can also move the declaration of each local variable into the smallest scope
that includes all its uses.    This makes the program even cleaner.

Don't use local variables or parameters that shadow global identifiers.

Don't declare multiple variables in one declaration that spans lines.    Start a new declaration
on each line, instead.    For example, instead of this:

int foo,
 bar;

write either this:

int foo, bar;

or this:

int foo;
int bar;

(If they are global variables, each should have a comment preceding it anyway.)

When you have an if-else statement nested in another if statement, always put braces
around the if-else.    Thus, never write like this:

if (foo)
 if (bar)
 win ();
 else
 lose ();

always like this:

if (foo)
 {
 if (bar)
 win ();
 else
 lose ();
 }

If you have an if statement nested inside of an else statement, either write else if on
one line, like this,

if (foo)
 ...
else if (bar)
 ...

with its then-part indented like the preceding then-part, or write the nested if within braces
like this:

if (foo)
 ...
else
 {
 if (bar)
 ...
 }

Don't declare both a structure tag and variables or typedefs in the same declaration.   
Instead, declare the structure tag separately and then use it to declare the variables or
typedefs.

Try to avoid assignments inside if-conditions.    For example, don't write this:

if ((foo = (char *) malloc (sizeof *foo)) == 0)
 fatal ("virtual memory exhausted");

instead, write this:

foo = (char *) malloc (sizeof *foo);
if (foo == 0)
 fatal ("virtual memory exhausted");

Don't make the program ugly to placate lint.    Please don't insert any casts to void.    Zero
without a cast is perfectly fine as a null pointer constant, except when calling a varargs
function.

Node: Names, Next: System Portability, Prev: Syntactic Conventions, Up: Writing C

Naming Variables and Functions
The names of global variables and functions in a program serve as comments of a sort.    So
don't choose terse names--instead, look for names that give useful information about the
meaning of the variable or function.    In a GNU program, names should be English, like other
comments.

Local variable names can be shorter, because they are used only within one context, where
(presumably) comments explain their purpose.

Please use underscores to separate words in a name, so that the Emacs word commands
can be useful within them.    Stick to lower case; reserve upper case for macros and enum
constants, and for name-prefixes that follow a uniform convention.

For example, you should use names like ignore_space_change_flag; don't use names like
iCantReadThis.

Variables that indicate whether command-line options have been specified should be named
after the meaning of the option, not after the option-letter.    A comment should state both
the exact meaning of the option and its letter.    For example,

/* Ignore changes in horizontal whitespace (-b). */
int ignore_space_change_flag;

When you want to define names with constant integer values, use enum rather than #define.
GDB knows about enumeration constants.

Use file names of 14 characters or less, to avoid creating gratuitous problems on older
System V systems.    You can use the program doschk to test for this.    doschk also tests for
potential name conflicts if the files were loaded onto an MS-DOS file system--something you
may or may not care about.

Node: System Portability, Next: CPU Portability, Prev: Names, Up: Writing C

Portability between System Types
In the Unix world, "portability" refers to porting to different Unix versions.    For a GNU
program, this kind of portability is desirable, but not paramount.

The primary purpose of GNU software is to run on top of the GNU kernel, compiled with the
GNU C compiler, on various types of CPU.    The amount and kinds of variation among GNU
systems on different CPUs will be comparable to the variation among Linux-based GNU
systems or among BSD systems today.    So the kinds of portability that are absolutely
necessary are quite limited.

But many users do run GNU software on non-GNU Unix or Unix-like systems.    So supporting
a variety of Unix-like systems is desirable, although not paramount.

The easiest way to achieve portability to most Unix-like systems is to use Autoconf.    It's
unlikely that your program needs to know more information about the host platform than
Autoconf can provide, simply because most of the programs that need such knowledge have
already been written.

Avoid using the format of semi-internal data bases (e.g., directories) when there is a higher-
level alternative (readdir).

As for systems that are not like Unix, such as MSDOS, Windows, the Macintosh, VMS, and
MVS, supporting them is usually so much work that it is better if you don't.

The planned GNU kernel is not finished yet, but you can tell which facilities it will provide by
looking at the GNU C Library Manual.    The GNU kernel is based on Mach, so the features of
Mach will also be available.    However, if you use Mach features, you'll probably have trouble
debugging your program today.

Node: CPU Portability, Next: System Functions, Prev: System Portability, Up: Writing C

Portability between CPUs
Even GNU systems will differ because of differences among CPU types--for example,
difference in byte ordering and alignment requirements.    It is absolutely essential to handle
these differences.    However, don't make any effort to cater to the possibility that an int will
be less than 32 bits.    We don't support 16-bit machines in GNU.

Don't assume that the address of an int object is also the address of its least-significant
byte.    This is false on big-endian machines.    Thus, don't make the following mistake:

int c;
...
while ((c = getchar()) != EOF)
 write(file_descriptor, &c, 1);

When calling functions, you need not worry about the difference between pointers of various
types, or between pointers and integers.    On most machines, there's no difference anyway.   
As for the few machines where there is a difference, all of them support ANSI C, so you can
use prototypes (conditionalized to be active only in ANSI C) to make the code work on those
systems.

In certain cases, it is ok to pass integer and pointer arguments indiscriminately to the same
function, and use no prototype on any system.    For example, many GNU programs have
error-reporting functions that pass their arguments along to printf and friends:

error (s, a1, a2, a3)
 char *s;
 int a1, a2, a3;
{
 fprintf (stderr, "error: ");
 fprintf (stderr, s, a1, a2, a3);
}

In practice, this works on all machines, and it is much simpler than any "correct" alternative. 
Be sure not to use a prototype for such functions.

However, avoid casting pointers to integers unless you really need to.    These assumptions
really reduce portability, and in most programs they are easy to avoid.    In the cases where
casting pointers to integers is essential--such as, a Lisp interpreter which stores type
information as well as an address in one word--it is ok to do so, but you'll have to make
explicit provisions to handle different word sizes.

Node: System Functions, Next: Internationalization, Prev: CPU Portability, Up: Writing C

Calling System Functions
C implementations differ substantially.    ANSI C reduces but does not eliminate the
incompatibilities; meanwhile, many users wish to compile GNU software with pre-ANSI
compilers.    This chapter gives recommendations for how to use the more or less standard C
library functions to avoid unnecessary loss of portability.

· Don't use the value of sprintf.    It returns the number of characters written on some
systems, but not on all systems.

· main should be declared to return type int.    It should terminate either by calling
exit or by returning the integer status code; make sure it cannot ever return an
undefined value.

· Don't declare system functions explicitly.

Almost any declaration for a system function is wrong on some system.    To minimize
conflicts, leave it to the system header files to declare system functions.    If the
headers don't declare a function, let it remain undeclared.

While it may seem unclean to use a function without declaring it, in practice this
works fine for most system library functions on the systems where this really
happens; thus, the disadvantage is only theoretical.    By contrast, actual declarations
have frequently caused actual conflicts.

· If you must declare a system function, don't specify the argument types.    Use an old-
style declaration, not an ANSI prototype.    The more you specify about the function, the
more likely a conflict.

· In particular, don't unconditionally declare malloc or realloc.

Most GNU programs use those functions just once, in functions conventionally named
xmalloc and xrealloc.    These functions call malloc and realloc, respectively, and
check the results.

Because xmalloc and xrealloc are defined in your program, you can declare them in
other files without any risk of type conflict.

On most systems, int is the same length as a pointer; thus, the calls to malloc and
realloc work fine.    For the few exceptional systems (mostly 64-bit machines), you
can use conditionalized declarations of malloc and realloc--or put these
declarations in configuration files specific to those systems.

· The string functions require special treatment.    Some Unix systems have a header
file string.h; others have strings.h.    Neither file name is portable.    There are two
things you can do: use Autoconf to figure out which file to include, or don't include
either file.

· If you don't include either strings file, you can't get declarations for the string
functions from the header file in the usual way.

That causes less of a problem than you might think.    The newer ANSI string functions

should be avoided anyway because many systems still don't support them.    The
string functions you can use are these:

strcpy strncpy strcat strncat
strlen strcmp strncmp
strchr strrchr

The copy and concatenate functions work fine without a declaration as long as you
don't use their values.    Using their values without a declaration fails on systems
where the width of a pointer differs from the width of int, and perhaps in other
cases.    It is trivial to avoid using their values, so do that.

The compare functions and strlen work fine without a declaration on most systems,
possibly all the ones that GNU software runs on.    You may find it necessary to
declare them conditionally on a few systems.

The search functions must be declared to return char *.    Luckily, there is no
variation in the data type they return.    But there is variation in their names.    Some
systems give these functions the names index and rindex; other systems use the
names strchr and strrchr.    Some systems support both pairs of names, but
neither pair works on all systems.

You should pick a single pair of names and use it throughout your program.   
(Nowadays, it is better to choose strchr and strrchr for new programs, since those
are the standard ANSI names.)    Declare both of those names as functions returning
char *.    On systems which don't support those names, define them as macros in
terms of the other pair.    For example, here is what to put at the beginning of your file
(or in a header) if you want to use the names strchr and strrchr throughout:

#ifndef HAVE_STRCHR
#define strchr index
#endif
#ifndef HAVE_STRRCHR
#define strrchr rindex
#endif

char *strchr ();
char *strrchr ();

Here we assume that HAVE_STRCHR and HAVE_STRRCHR are macros defined in systems where
the corresponding functions exist.    One way to get them properly defined is to use Autoconf.

Node: Internationalization, Next: Mmap, Prev: System Functions, Up: Writing C

Internationalization
GNU has a library called GNU gettext that makes it easy to translate the messages in a
program into various languages.    You should use this library in every program.    Use English
for the messages as they appear in the program, and let gettext provide the way to
translate them into other languages.

Using GNU gettext involves putting a call to the gettext macro around each string that
might need translation--like this:

printf (gettext ("Processing file `%s'..."));

This permits GNU gettext to replace the string "Processing file `%s'..." with a
translated version.

Once a program uses gettext, please make a point of writing calls to gettext when you add
new strings that call for translation.

Using GNU gettext in a package involves specifying a "text domain name" for the package.   
The text domain name is used to separate the translations for this package from the
translations for other packages.    Normally, the text domain name should be the same as the
name of the package--for example, fileutils for the GNU file utilities.

To enable gettext to work well, avoid writing code that makes assumptions about the
structure of words or sentences.    When you want the precise text of a sentence to vary
depending on the data, use two or more alternative string constants each containing a
complete sentences, rather than inserting conditionalized words or phrases into a single
sentence framework.

Here is an example of what not to do:

printf ("%d file%s processed", nfiles,
 nfiles != 1 ? "s" : "");

The problem with that example is that it assumes that plurals are made by adding `s'.    If
you apply gettext to the format string, like this,

printf (gettext ("%d file%s processed"), nfiles,
 nfiles != 1 ? "s" : "");

the message can use different words, but it will still be forced to use `s' for the plural.    Here
is a better way:

printf ((nfiles != 1 ? "%d files processed"
 : "%d file processed"),
 nfiles);

This way, you can apply gettext to each of the two strings independently:

printf ((nfiles != 1 ? gettext ("%d files processed")
 : gettext ("%d file processed")),
 nfiles);

This can any method of forming the plural of the word for "file", and also handles languages
that require agreement in the word for "processed".

A similar problem appears at the level of sentence structure with this code:

printf ("# Implicit rule search has%s been done.\n",
 f->tried_implicit ? "" : " not");

Adding gettext calls to this code cannot give correct results for all languages, because
negation in some languages requires adding words at more than one place in the sentence.   
By contrast, adding gettext calls does the job straightfowardly if the code starts out like
this:

printf (f->tried_implicit
 ? "# Implicit rule search has been done.\n",
 : "# Implicit rule search has not been done.\n");

Node: Mmap, Next: , Prev: Internationalization, Up: Writing C

Mmap
Don't assume that mmap either works on all files or fails for all files.    It may work on some
files and fail on others.

The proper way to use mmap is to try it on the specific file for which you want to use it--and if
mmap doesn't work, fall back on doing the job in another way using read and write.

The reason this precaution is needed is that the GNU kernel (the HURD) provides a user-
extensible file system, in which there can be many different kinds of "ordinary files."    Many
of them support mmap, but some do not.    It is important to make programs handle all these
kinds of files.

Node: Documentation, Next: Managing Releases, Prev: Writing C, Up: Top

Documenting Programs
* Menu:

GNU Manuals Writing proper manuals.
Manual Structure Details Specific structure conventions.
NEWS File NEWS files supplement manuals.
Change Logs Recording Changes
Man Pages Man pages are secondary.
Reading other Manuals How far you can go in learning from other manuals.

Node: GNU Manuals, Next: Manual Structure Details, Prev: , Up: Documentation

GNU Manuals
The preferred way to document part of the GNU system is to write a manual in the Texinfo
formatting language.    See the Texinfo manual, either the hardcopy, or the on-line version
available through info or the Emacs Info subsystem (C-h i).

Programmers often find it most natural to structure the documentation following the
structure of the implementation, which they know.    But this structure is not necessarily
good for explaining how to use the program; it may be irrelevant and confusing for a user.

At every level, from the sentences in a paragraph to the grouping of topics into separate
manuals, the right way to structure documentation is according to the concepts and
questions that a user will have in mind when reading it.    Sometimes this structure of ideas
matches the structure of the implementation of the software being documented--but often
they are different.    Often the most important part of learning to write good documentation
is learning to notice when you are structuring the documentation like the implementation,
and think about better alternatives.

For example, each program in the GNU system probably ought to be documented in one
manual; but this does not mean each program should have its own manual.    That would be
following the structure of the implementation, rather than the structure that helps the user
understand.

Instead, each manual should cover a coherent topic.    For example, instead of a manual for
diff and a manual for diff3, we have one manual for "comparison of files" which covers
both of those programs, as well as cmp.    By documenting these programs together, we can
make the whole subject clearer.

The manual which discusses a program should document all of the program's command-line
options and all of its commands.    It should give examples of their use.    But don't organize
the manual as a list of features.    Instead, organize it logically, by subtopics.    Address the
questions that a user will ask when thinking about the job that the program does.

In general, a GNU manual should serve both as tutorial and reference.    It should be set up
for convenient access to each topic through Info, and for reading straight through
(appendixes aside).    A GNU manual should give a good introduction to a beginner reading
through from the start, and should also provide all the details that hackers want.

That is not as hard as it first sounds.    Arrange each chapter as a logical breakdown of its
topic, but order the sections, and write their text, so that reading the chapter straight
through makes sense.    Do likewise when structuring the book into chapters, and when
structuring a section into paragraphs.    The watchword is, at each point, address the most
fundamental and important issue raised by the preceding text.

If necessary, add extra chapters at the beginning of the manual which are purely tutorial and
cover the basics of the subject.    These provide the framework for a beginner to understand
the rest of the manual.    The Bison manual provides a good example of how to do this.

Don't use Unix man pages as a model for how to write GNU documentation; most of them
are terse, badly structured, and give inadequate explanation of the underlying concepts.   
(There are, of course exceptions.)    Also Unix man pages use a particular format which is
different from what we use in GNU manuals.

Please do not use the term "pathname" that is used in Unix documentation; use "file name"
(two words) instead.    We use the term "path" only for search paths, which are lists of file
names.

Please do not use the term "illegal" to refer to erroneous input to a computer program.   
Please use "invalid" for this, and reserve the term "illegal" for violations of law.

Node: Manual Structure Details, Next: NEWS File, Prev: GNU Manuals, Up: Documentation

Manual Structure Details
The title page of the manual should state the version of the programs or packages
documented in the manual.    The Top node of the manual should also contain this
information.    If the manual is changing more frequently than or independent of the
program, also state a version number for the manual in both of these places.

Each program documented in the manual should should have a node named program
Invocation or Invoking program.    This node (together with its subnodes, if any) should
describe the program's command line arguments and how to run it (the sort of information
people would look in a man page for).    Start with an @example containing a template for all
the options and arguments that the program uses.

Alternatively, put a menu item in some menu whose item name fits one of the above
patterns.    This identifies the node which that item points to as the node for this purpose,
regardless of the node's actual name.

There will be automatic features for specifying a program name and quickly reading just this
part of its manual.

If one manual describes several programs, it should have such a node for each program
described.

Node: NEWS File, Next: Change Logs, Prev: Manual Structure Details, Up: Documentation

The NEWS File
In addition to its manual, the package should have a file named NEWS which contains a list of
user-visible changes worth mentioning.    In each new release, add items to the front of the
file and identify the version they pertain to.    Don't discard old items; leave them in the file
after the newer items.    This way, a user upgrading from any previous version can see what
is new.

If the NEWS file gets very long, move some of the older items into a file named ONEWS and put
a note at the end referring the user to that file.

Node: Change Logs, Next: Man Pages, Prev: NEWS File, Up: Documentation

Change Logs
Keep a change log to describe all the changes made to program source files.    The purpose
of this is so that people investigating bugs in the future will know about the changes that
might have introduced the bug.    Often a new bug can be found by looking at what was
recently changed.    More importantly, change logs can help you eliminate conceptual
inconsistencies between different parts of a program, by giving you a history of how the
conflicting concepts arose and who they came from.

* Menu:

Change Log Concepts
Style of Change Logs
Simple Changes
Conditional Changes

Node: Change Log Concepts, Next: Style of Change Logs, Prev: , Up: Change Logs

Change Log Concepts
You can think of the change log as a conceptual "undo list" which explains how earlier
versions were different from the current version.    People can see the current version; they
don't need the change log to tell them what is in it.    What they want from a change log is a
clear explanation of how the earlier version differed.

The change log file is normally called ChangeLog and covers an entire directory.    Each
directory can have its own change log, or a directory can use the change log of its parent
directory-it's up to you.

Another alternative is to record change log information with a version control system such as
RCS or CVS.    This can be converted automatically to a ChangeLog file.

There's no need to describe the full purpose of the changes or how they work together.    If
you think that a change calls for explanation, you're probably right.    Please do explain it--
but please put the explanation in comments in the code, where people will see it whenever
they see the code.    For example, "New function" is enough for the change log when you add
a function, because there should be a comment before the function definition to explain
what it does.

However, sometimes it is useful to write one line to describe the overall purpose of a batch
of changes.

The easiest way to add an entry to ChangeLog is with the Emacs command M-x add-
change-log-entry.    An entry should have an asterisk, the name of the changed file, and
then in parentheses the name of the changed functions, variables or whatever, followed by a
colon.    Then describe the changes you made to that function or variable.

Node: Style of Change Logs, Next: Simple Changes, Prev: Change Log Concepts, Up:
Change Logs

Style of Change Logs
Here are some examples of change log entries:

* register.el (insert-register): Return nil.
(jump-to-register): Likewise.

* sort.el (sort-subr): Return nil.

* tex-mode.el (tex-bibtex-file, tex-file, tex-region):
Restart the tex shell if process is gone or stopped.
(tex-shell-running): New function.

* expr.c (store_one_arg): Round size up for move_block_to_reg.
(expand_call): Round up when emitting USE insns.
* stmt.c (assign_parms): Round size up for move_block_from_reg.

It's important to name the changed function or variable in full.    Don't abbreviate function or
variable names, and don't combine them.    Subsequent maintainers will often search for a
function name to find all the change log entries that pertain to it; if you abbreviate the
name, they won't find it when they search.

For example, some people are tempted to abbreviate groups of function names by writing *
register.el ({insert,jump-to}-register); this is not a good idea, since searching for
jump-to-register or insert-register would not find that entry.

Separate unrelated change log entries with blank lines.    When two entries represent parts of
the same change, so that they work together, then don't put blank lines between them.   
Then you can omit the file name and the asterisk when successive entries are in the same
file.

Node: Simple Changes, Next: Conditional Changes, Prev: Style of Change Logs, Up: Change
Logs

Simple Changes
Certain simple kinds of changes don't need much detail in the change log.

When you change the calling sequence of a function in a simple fashion, and you change all
the callers of the function, there is no need to make individual entries for all the callers that
you changed.    Just write in the entry for the function being called, "All callers changed."

* keyboard.c (Fcommand_execute): New arg SPECIAL.
All callers changed.

When you change just comments or doc strings, it is enough to write an entry for the file,
without mentioning the functions.    Just "Doc fixes" is enough for the change log.

There's no need to make change log entries for documentation files.    This is because
documentation is not susceptible to bugs that are hard to fix.    Documentation does not
consist of parts that must interact in a precisely engineered fashion.    To correct an error,
you need not know the history of the erroneous passage; it is enough to compare what the
documentation says with the way the program actually works.

Node: Conditional Changes, Next: , Prev: Simple Changes, Up: Change Logs

Conditional Changes
C programs often contain compile-time #if conditionals.    Many changes are conditional;
sometimes you add a new definition which is entirely contained in a conditional.    It is very
useful to indicate in the change log the conditions for which the change applies.

Our convention for indicating conditional changes is to use square brackets around the name
of the condition.

Here is a simple example, describing a change which is conditional but does not have a
function or entity name associated with it:

* xterm.c [SOLARIS2]: Include string.h.

Here is an entry describing a new definition which is entirely conditional.    This new
definition for the macro FRAME_WINDOW_P is used only when HAVE_X_WINDOWS is defined:

* frame.h [HAVE_X_WINDOWS] (FRAME_WINDOW_P): Macro defined.

Here is an entry for a change within the function init_display, whose definition as a whole
is unconditional, but the changes themselves are contained in a #ifdef HAVE_LIBNCURSES
conditional:

* dispnew.c (init_display) [HAVE_LIBNCURSES]: If X, call tgetent.

Here is an entry for a change that takes affect only when a certain macro is not defined:

(gethostname) [!HAVE_SOCKETS]: Replace with winsock version.

Node: Man Pages, Next: Reading other Manuals, Prev: Change Logs, Up: Documentation

Man Pages
In the GNU project, man pages are secondary.    It is not necessary or expected for every
GNU program to have a man page, but some of them do.    It's your choice whether to
include a man page in your program.

When you make this decision, consider that supporting a man page requires continual effort
each time the program is changed.    The time you spend on the man page is time taken
away from more useful work.

For a simple program which changes little, updating the man page may be a small job.   
Then there is little reason not to include a man page, if you have one.

For a large program that changes a great deal, updating a man page may be a substantial
burden.    If a user offers to donate a man page, you may find this gift costly to accept.    It
may be better to refuse the man page unless the same person agrees to take full
responsibility for maintaining it--so that you can wash your hands of it entirely.    If this
volunteer later ceases to do the job, then don't feel obliged to pick it up yourself; it may be
better to withdraw the man page from the distribution until someone else agrees to update
it.

When a program changes only a little, you may feel that the discrepancies are small enough
that the man page remains useful without updating.    If so, put a prominent note near the
beginning of the man page explaining that you don't maintain it and that the Texinfo manual
is more authoritative.    The note should say how to access the Texinfo documentation.

Node: Reading other Manuals, Next: , Prev: Man Pages, Up: Documentation

Reading other Manuals
There may be non-free books or documentation files that describe the program you are
documenting.

It is ok to use these documents for reference, just as the author of a new algebra textbook
can read other books on algebra.    A large portion of any non-fiction book consists of facts, in
this case facts about how a certain program works, and these facts are necessarily the same
for everyone who writes about the subject.    But be careful not to copy your outline
structure, wording, tables or examples from preexisting non-free documentation.    Copying
from free documentation may be ok; please check with the FSF about the individual case.

Node: Managing Releases, Next: , Prev: Documentation, Up: Top

The Release Process
Making a release is more than just bundling up your source files in a tar file and putting it up
for FTP.    You should set up your software so that it can be configured to run on a variety of
systems.    Your Makefile should conform to the GNU standards described below, and your
directory layout should also conform to the standards discussed below.    Doing so makes it
easy to include your package into the larger framework of all GNU software.

* Menu:

Configuration How Configuration Should Work
Makefile Conventions Makefile Conventions
Releases Making Releases

Node: Configuration, Next: Makefile Conventions, Prev: , Up: Managing Releases

How Configuration Should Work
Each GNU distribution should come with a shell script named configure.    This script is
given arguments which describe the kind of machine and system you want to compile the
program for.

The configure script must record the configuration options so that they affect compilation.

One way to do this is to make a link from a standard name such as config.h to the proper
configuration file for the chosen system.    If you use this technique, the distribution should
not contain a file named config.h.    This is so that people won't be able to build the
program without configuring it first.

Another thing that configure can do is to edit the Makefile.    If you do this, the distribution
should not contain a file named Makefile.    Instead, it should include a file Makefile.in
which contains the input used for editing.    Once again, this is so that people won't be able
to build the program without configuring it first.

If configure does write the Makefile, then Makefile should have a target named Makefile
which causes configure to be rerun, setting up the same configuration that was set up last
time.    The files that configure reads should be listed as dependencies of Makefile.

All the files which are output from the configure script should have comments at the
beginning explaining that they were generated automatically using configure.    This is so
that users won't think of trying to edit them by hand.

The configure script should write a file named config.status which describes which
configuration options were specified when the program was last configured.    This file should
be a shell script which, if run, will recreate the same configuration.

The configure script should accept an option of the form --srcdir=dirname to specify the
directory where sources are found (if it is not the current directory).    This makes it possible
to build the program in a separate directory, so that the actual source directory is not
modified.

If the user does not specify --srcdir, then configure should check both . and .. to see if it
can find the sources.    If it finds the sources in one of these places, it should use them from
there.    Otherwise, it should report that it cannot find the sources, and should exit with
nonzero status.

Usually the easy way to support --srcdir is by editing a definition of VPATH into the
Makefile.    Some rules may need to refer explicitly to the specified source directory.    To
make this possible, configure can add to the Makefile a variable named srcdir whose
value is precisely the specified directory.

The configure script should also take an argument which specifies the type of system to
build the program for.    This argument should look like this:

cpu-company-system

For example, a Sun 3 might be m68k-sun-sunos4.1.

The configure script needs to be able to decode all plausible alternatives for how to
describe a machine.    Thus, sun3-sunos4.1 would be a valid alias.    For many programs,
vax-dec-ultrix would be an alias for vax-dec-bsd, simply because the differences
between Ultrix and BSD are rarely noticeable, but a few programs might need to distinguish
them.

There is a shell script called config.sub that you can use as a subroutine to validate system
types and canonicalize aliases.

Other options are permitted to specify in more detail the software or hardware present on
the machine, and include or exclude optional parts of the package:

--enable-feature[=parameter]
Configure the package to build and install an optional user-level facility called
feature.    This allows users to choose which optional features to include.    Giving an
optional parameter of no should omit feature, if it is built by default.

No --enable option should ever cause one feature to replace another.    No --enable
option should ever substitute one useful behavior for another useful behavior.    The
only proper use for --enable is for questions of whether to build part of the program
or exclude it.

--with-package
The package package will be installed, so configure this package to work with
package.

Possible values of package include x, x-toolkit, gnu-as (or gas), gnu-ld, gnu-libc,
and gdb.

Do not use a --with option to specify the file name to use to find certain files.    That
is outside the scope of what --with options are for.

--nfp
The target machine has no floating point processor.

--gas
The target machine assembler is GAS, the GNU assembler.    This is obsolete; users
should use --with-gnu-as instead.

--x
The target machine has the X Window System installed.    This is obsolete; users should use
--with-x instead.   

All configure scripts should accept all of these "detail" options, whether or not they make
any difference to the particular package at hand.    In particular, they should accept any
option that starts with --with- or --enable-.    This is so users will be able to configure an
entire GNU source tree at once with a single set of options.

You will note that the categories --with- and --enable- are narrow: they do not provide a
place for any sort of option you might think of.    That is deliberate.    We want to limit the
possible configuration options in GNU software.    We do not want GNU programs to have
idiosyncratic configuration options.

Packages that perform part of the compilation process may support cross-compilation.    In

such a case, the host and target machines for the program may be different.    The
configure script should normally treat the specified type of system as both the host and the
target, thus producing a program which works for the same type of machine that it runs on.

The way to build a cross-compiler, cross-assembler, or what have you, is to specify the
option --host=hosttype when running configure.    This specifies the host system without
changing the type of target system.    The syntax for hosttype is the same as described
above.

Bootstrapping a cross-compiler requires compiling it on a machine other than the host it will
run on.    Compilation packages accept a configuration option --build=hosttype for
specifying the configuration on which you will compile them, in case that is different from
the host.

Programs for which cross-operation is not meaningful need not accept the --host option,
because configuring an entire operating system for cross-operation is not a meaningful
thing.

Some programs have ways of configuring themselves automatically.    If your program is set
up to do this, your configure script can simply ignore most of its arguments.

Node: Makefile Conventions, Next: Releases, Prev: Configuration, Up: Managing Releases

Makefile Conventions
This node describes conventions for writing the Makefiles for GNU programs.

* Menu:

Makefile Basics General Conventions for Makefiles
Utilities in Makefiles Utilities in Makefiles
Command Variables Variables for Specifying Commands
Directory Variables Variables for Installation Directories
Standard Targets Standard Targets for Users
Install Command Categories Three categories of commands in the `install' rule: normal, pre-

install and post-install.

Node: Makefile Basics, Next: Utilities in Makefiles, Prev: , Up: Makefile Conventions

General Conventions for Makefiles
Every Makefile should contain this line:

SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited from the
environment.    (This is never a problem with GNU make.)

Different make programs have incompatible suffix lists and implicit rules, and this sometimes
creates confusion or misbehavior.    So it is a good idea to set the suffix list explicitly using
only the suffixes you need in the particular Makefile, like this:

.SUFFIXES:

.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all suffixes which may be
subject to implicit rules in this Makefile.

Don't assume that . is in the path for command execution.    When you need to run programs
that are a part of your package during the make, please make sure that it uses ./ if the
program is built as part of the make or $(srcdir)/ if the file is an unchanging part of the
source code.    Without one of these prefixes, the current search path is used.

The distinction between ./ (the "build directory") and $(srcdir)/ (the "source directory") is
important because users can build in a separate directory using the --srcdir option to
configure.    A rule of the form:

foo.1 : foo.man sedscript
 sed -e sedscript foo.man > foo.1

will fail when the build directory is not the source directory, because foo.man and sedscript
are in the the source directory.

When using GNU make, relying on VPATH to find the source file will work in the case where
there is a single dependency file, since the make automatic variable $< will represent the
source file wherever it is.    (Many versions of make set $< only in implicit rules.)    A Makefile
target like

foo.o : bar.c
 $(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as

foo.o : bar.c
 $(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow VPATH to work correctly.    When the target has multiple dependencies, using
an explicit $(srcdir) is the easiest way to make the rule work well.    For example, the
target above for foo.1 is best written as:

foo.1 : foo.man sedscript
 sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

GNU distributions usually contain some files which are not source files--for example, Info
files, and the output from Autoconf, Automake, Bison or Flex.    Since these files normally
appear in the source directory, they should always appear in the source directory, not in the
build directory.    So Makefile rules to update them should put the updated files in the source
directory.

However, if a file does not appear in the distribution, then the Makefile should not put it in
the source directory, because building a program in ordinary circumstances should not
modify the source directory in any way.

Try to make the build and installation targets, at least (and all their subtargets) work
correctly with a parallel make.

Node: Utilities in Makefiles, Next: Command Variables, Prev: Makefile Basics, Up: Makefile
Conventions

Utilities in Makefiles
Write the Makefile commands (and any shell scripts, such as configure) to run in sh, not in
csh.    Don't use any special features of ksh or bash.

The configure script and the Makefile rules for building and installation should not use any
utilities directly except these:

cat cmp cp diff echo egrep expr false grep install-info
ln ls mkdir mv pwd rm rmdir sed sleep sort tar test touch true

The compression program gzip can be used in the dist rule.

Stick to the generally supported options for these programs.    For example, don't use mkdir
-p, convenient as it may be, because most systems don't support it.

It is a good idea to avoid creating symbolic links in makefiles, since a few systems don't
support them.

The Makefile rules for building and installation can also use compilers and related programs,
but should do so via make variables so that the user can substitute alternatives.    Here are
some of the programs we mean:

ar bison cc flex install ld ldconfig lex
make makeinfo ranlib texi2dvi yacc

Use the following make variables to run those programs:

$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX)
$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib or ldconfig, you should make sure nothing bad happens if the
system does not have the program in question.    Arrange to ignore an error from that
command, and print a message before the command to tell the user that failure of this
command does not mean a problem.    (The Autoconf AC_PROG_RANLIB macro can help with
this.)

If you use symbolic links, you should implement a fallback for systems that don't have
symbolic links.

Additional utilities that can be used via Make variables are:

chgrp chmod chown mknod

It is ok to use other utilities in Makefile portions (or scripts) intended only for particular
systems where you know those utilities exist.

Node: Command Variables, Next: Directory Variables, Prev: Utilities in Makefiles, Up:
Makefile Conventions

Variables for Specifying Commands
Makefiles should provide variables for overriding certain commands, options, and so on.

In particular, you should run most utility programs via variables.    Thus, if you use Bison,
have a variable named BISON whose default value is set with BISON = bison, and refer to it
with $(BISON) whenever you need to use Bison.

File management utilities such as ln, rm, mv, and so on, need not be referred to through
variables in this way, since users don't need to replace them with other programs.

Each program-name variable should come with an options variable that is used to supply
options to the program.    Append FLAGS to the program-name variable name to get the
options variable name--for example, BISONFLAGS.    (The name CFLAGS is an exception to this
rule, but we keep it because it is standard.)    Use CPPFLAGS in any compilation command
that runs the preprocessor, and use LDFLAGS in any compilation command that does linking
as well as in any direct use of ld.

If there are C compiler options that must be used for proper compilation of certain files, do
not include them in CFLAGS.    Users expect to be able to specify CFLAGS freely themselves.   
Instead, arrange to pass the necessary options to the C compiler independently of CFLAGS,
by writing them explicitly in the compilation commands or by defining an implicit rule, like
this:

CFLAGS = -g
ALL_CFLAGS = -I. $(CFLAGS)
.c.o:
 $(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the -g option in CFLAGS, because that is not required for proper compilation.    You
can consider it a default that is only recommended.    If the package is set up so that it is
compiled with GCC by default, then you might as well include -O in the default value of
CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables containing compiler
options, so the user can use CFLAGS to override the others.

Every Makefile should define the variable INSTALL, which is the basic command for installing
a file into the system.

Every Makefile should also define the variables INSTALL_PROGRAM and INSTALL_DATA.    (The
default for each of these should be $(INSTALL).)    Then it should use those variables as the
commands for actual installation, for executables and nonexecutables respectively.    Use
these variables as follows:

$(INSTALL_PROGRAM) foo $(bindir)/foo
$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

Always use a file name, not a directory name, as the second argument of the installation
commands.    Use a separate command for each file to be installed.

Node: Directory Variables, Next: Standard Targets, Prev: Command Variables, Up: Makefile
Conventions

Variables for Installation Directories
Installation directories should always be named by variables, so it is easy to install in a
nonstandard place.    The standard names for these variables are described below.    They are
based on a standard filesystem layout; variants of it are used in SVR4, 4.4BSD, Linux, Ultrix
v4, and other modern operating systems.

These two variables set the root for the installation.    All the other installation directories
should be subdirectories of one of these two, and nothing should be directly installed into
these two directories.

prefix
A prefix used in constructing the default values of the variables listed below.    The
default value of prefix should be /usr/local.    When building the complete GNU
system, the prefix will be empty and /usr will be a symbolic link to /.    (If you are
using Autoconf, write it as @prefix@.)

exec_prefix
A prefix used in constructing the default values of some of the variables listed below.    The
default value of exec_prefix should be $(prefix).    (If you are using Autoconf, write it as
@exec_prefix@.)

Generally, $(exec_prefix) is used for directories that contain machine-specific files (such
as executables and subroutine libraries), while $(prefix) is used directly for other
directories.   

Executable programs are installed in one of the following directories.

bindir
The directory for installing executable programs that users can run.    This should
normally be /usr/local/bin, but write it as $(exec_prefix)/bin.    (If you are using
Autoconf, write it as @bindir@.)

sbindir
The directory for installing executable programs that can be run from the shell, but
are only generally useful to system administrators.    This should normally be
/usr/local/sbin, but write it as $(exec_prefix)/sbin.    (If you are using Autoconf,
write it as @sbindir@.)

libexecdir
The directory for installing executable programs to be run by other programs rather than by
users.    This directory should normally be /usr/local/libexec, but write it as $
(exec_prefix)/libexec.    (If you are using Autoconf, write it as @libexecdir@.)

Data files used by the program during its execution are divided into categories in two ways.

· Some files are normally modified by programs; others are never normally modified
(though users may edit some of these).

· Some files are architecture-independent and can be shared by all machines at a site;
some are architecture-dependent and can be shared only by machines of the same kind and

operating system; others may never be shared between two machines.   

This makes for six different possibilities.    However, we want to discourage the use of
architecture-dependent files, aside from object files and libraries.    It is much cleaner to
make other data files architecture-independent, and it is generally not hard.

Therefore, here are the variables Makefiles should use to specify directories:

datadir
The directory for installing read-only architecture independent data files.    This should
normally be /usr/local/share, but write it as $(prefix)/share.    (If you are using
Autoconf, write it as @datadir@.) As a special exception, see $(infodir) and $
(includedir) below.

sysconfdir
The directory for installing read-only data files that pertain to a single machine-that is
to say, files for configuring a host.    Mailer and network configuration files,
/etc/passwd, and so forth belong here.    All the files in this directory should be
ordinary ASCII text files.    This directory should normally be /usr/local/etc, but
write it as $(prefix)/etc.    (If you are using Autoconf, write it as @sysconfdir@.)

Do not install executables in this directory (they probably belong in $(libexecdir) or
$(sbindir)).    Also do not install files that are modified in the normal course of their
use (programs whose purpose is to change the configuration of the system
excluded).    Those probably belong in $(localstatedir).

sharedstatedir
The directory for installing architecture-independent data files which the programs
modify while they run.    This should normally be /usr/local/com, but write it as $
(prefix)/com.    (If you are using Autoconf, write it as @sharedstatedir@.)

localstatedir
The directory for installing data files which the programs modify while they run, and
that pertain to one specific machine.    Users should never need to modify files in this
directory to configure the package's operation; put such configuration information in
separate files that go in $(datadir) or $(sysconfdir).    $(localstatedir) should
normally be /usr/local/var, but write it as $(prefix)/var.    (If you are using
Autoconf, write it as @localstatedir@.)

libdir
The directory for object files and libraries of object code.    Do not install executables
here, they probably ought to go in $(libexecdir) instead.    The value of libdir
should normally be /usr/local/lib, but write it as $(exec_prefix)/lib.    (If you
are using Autoconf, write it as @libdir@.)

infodir
The directory for installing the Info files for this package.    By default, it should be
/usr/local/info, but it should be written as $(prefix)/info.    (If you are using
Autoconf, write it as @infodir@.)

lispdir
The directory for installing any Emacs Lisp files in this package.    By default, it should
be /usr/local/share/emacs/site-lisp, but it should be written as
$(prefix)/share/emacs/site-lisp.

If you are using Autoconf, write the default as @lispdir@.    In order to make
@lispdir@ work, you need the following lines in your configure.in file:

lispdir='${datadir}/emacs/site-lisp'
AC_SUBST(lispdir)

includedir
The directory for installing header files to be included by user programs with the C
#include preprocessor directive.    This should normally be /usr/local/include, but
write it as $(prefix)/include.    (If you are using Autoconf, write it as
@includedir@.)

Most compilers other than GCC do not look for header files in /usr/local/include.   
So installing the header files this way is only useful with GCC.    Sometimes this is not
a problem because some libraries are only really intended to work with GCC.    But
some libraries are intended to work with other compilers.    They should install their
header files in two places, one specified by includedir and one specified by
oldincludedir.

oldincludedir
The directory for installing #include header files for use with compilers other than
GCC.    This should normally be /usr/include.    (If you are using Autoconf, you can
write it as @oldincludedir@.)

The Makefile commands should check whether the value of oldincludedir is empty. 
If it is, they should not try to use it; they should cancel the second installation of the
header files.

A package should not replace an existing header in this directory unless the header
came from the same package.    Thus, if your Foo package provides a header file
foo.h, then it should install the header file in the oldincludedir directory if either
(1) there is no foo.h there or (2) the foo.h that exists came from the Foo package.

To tell whether foo.h came from the Foo package, put a magic string in the file--part of a
comment--and grep for that string.   

Unix-style man pages are installed in one of the following:

mandir
The top-level directory for installing the man pages (if any) for this package.    It will
normally be /usr/local/man, but you should write it as $(prefix)/man.    (If you are
using Autoconf, write it as @mandir@.)

man1dir
The directory for installing section 1 man pages.    Write it as $(mandir)/man1.

man2dir
The directory for installing section 2 man pages.    Write it as $(mandir)/man2

...
Don't make the primary documentation for any GNU software be a man page.   
Write a manual in Texinfo instead.    Man pages are just for the sake of people
running GNU software on Unix, which is a secondary application only.

manext
The file name extension for the installed man page.    This should contain a period
followed by the appropriate digit; it should normally be .1.

man1ext
The file name extension for installed section 1 man pages.

man2ext
The file name extension for installed section 2 man pages.

...
Use these names instead of manext if the package needs to install man pages in more than
one section of the manual.   

And finally, you should set the following variable:

srcdir
The directory for the sources being compiled.    The value of this variable is normally inserted
by the configure shell script.    (If you are using Autconf, use srcdir = @srcdir@.)

For example:

Common prefix for installation directories.
NOTE: This directory must exist when you start the install.
prefix = /usr/local
exec_prefix = $(prefix)
Where to put the executable for the command `gcc'.
bindir = $(exec_prefix)/bin
Where to put the directories used by the compiler.
libexecdir = $(exec_prefix)/libexec
Where to put the Info files.
infodir = $(prefix)/info

If your program installs a large number of files into one of the standard user-specified
directories, it might be useful to group them into a subdirectory particular to that program.   
If you do this, you should write the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value of any of the variables
listed above.    The idea of having a uniform set of variable names for installation directories
is to enable the user to specify the exact same values for several different GNU packages.   
In order for this to be useful, all the packages must be designed so that they will work
sensibly when the user does so.

Node: Standard Targets, Next: Install Command Categories, Prev: Directory Variables, Up:
Makefile Conventions

Standard Targets for Users
All GNU programs should have the following targets in their Makefiles:

all
Compile the entire program.    This should be the default target.    This target need not
rebuild any documentation files; Info files should normally be included in the
distribution, and DVI files should be made only when explicitly asked for.

By default, the Make rules should compile and link with -g, so that executable
programs have debugging symbols.    Users who don't mind being helpless can strip
the executables later if they wish.

install
Compile the program and copy the executables, libraries, and so on to the file names
where they should reside for actual use.    If there is a simple test to verify that a
program is properly installed, this target should run that test.

Do not strip executables when installing them.    Devil-may-care users can use the
install-strip target to do that.

If possible, write the install target rule so that it does not modify anything in the
directory where the program was built, provided make all has just been done.    This
is convenient for building the program under one user name and installing it under
another.

The commands should create all the directories in which files are to be installed, if
they don't already exist.    This includes the directories specified as the values of the
variables prefix and exec_prefix, as well as all subdirectories that are needed.   
One way to do this is by means of an installdirs target as described below.

Use - before any command for installing a man page, so that make will ignore any
errors.    This is in case there are systems that don't have the Unix man page
documentation system installed.

The way to install Info files is to copy them into $(infodir) with $(INSTALL_DATA)
(see Command Variables), and then run the install-info program if it is present.   
install-info is a program that edits the Info dir file to add or update the menu
entry for the given Info file; it is part of the Texinfo package.    Here is a sample rule to
install an Info file:

$(infodir)/foo.info: foo.info
 $(POST_INSTALL)
There may be a newer info file in . than in srcdir.
 -if test -f foo.info; then d=.; \
 else d=$(srcdir); fi; \
 $(INSTALL_DATA) $$d/foo.info $@; \
Run install-info only if it exists.
Use `if' instead of just prepending `-' to the
line so we notice real errors from install-info.
We use `$(SHELL) -c' because some shells do not
fail gracefully when there is an unknown command.
 if $(SHELL) -c 'install-info --version' \
 >/dev/null 2>&1; then \
 install-info --dir-file=$(infodir)/dir \
 $(infodir)/foo.info; \
 else true; fi

When writing the install target, you must classify all the commands into three
categories: normal ones, "pre-installation" commands and "post-installation"
commands.    See Install Command Categories.

uninstall
Delete all the installed files--the copies that the install target creates.

This rule should not modify the directories where compilation is done, only the
directories where files are installed.

The uninstallation commands are divided into three categories, just like the
installation commands.    See Install Command Categories.

install-strip
Like install, but strip the executable files while installing them.    In many cases, the
definition of this target can be very simple:

install-strip:
 $(MAKE) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' \
 install

Normally we do not recommend stripping an executable unless you are sure the
program has no bugs.    However, it can be reasonable to install a stripped executable
for actual execution while saving the unstripped executable elsewhere in case there
is a bug.

clean
Delete all files from the current directory that are normally created by building the
program.    Don't delete the files that record the configuration.    Also preserve files
that could be made by building, but normally aren't because the distribution comes
with them.

Delete .dvi files here if they are not part of the distribution.

distclean
Delete all files from the current directory that are created by configuring or building
the program.    If you have unpacked the source and built the program without
creating any other files, make distclean should leave only the files that were in the

distribution.

mostlyclean
Like clean, but may refrain from deleting a few files that people normally don't want
to recompile.    For example, the mostlyclean target for GCC does not delete
libgcc.a, because recompiling it is rarely necessary and takes a lot of time.

maintainer-clean
Delete almost everything from the current directory that can be reconstructed with
this Makefile.    This typically includes everything deleted by distclean, plus more: C
source files produced by Bison, tags tables, Info files, and so on.

The reason we say "almost everything" is that running the command make
maintainer-clean should not delete configure even if configure can be remade
using a rule in the Makefile.    More generally, make maintainer-clean should not
delete anything that needs to exist in order to run configure and then begin to build
the program.    This is the only exception; maintainer-clean should delete
everything else that can be rebuilt.

The maintainer-clean target is intended to be used by a maintainer of the package,
not by ordinary users.    You may need special tools to reconstruct some of the files
that make maintainer-clean deletes.    Since these files are normally included in the
distribution, we don't take care to make them easy to reconstruct.    If you find you
need to unpack the full distribution again, don't blame us.

To help make users aware of this, the commands for the special maintainer-clean
target should start with these two:

@echo 'This command is intended for maintainers to use; it'
@echo 'deletes files that may need special tools to rebuild.'

TAGS
Update a tags table for this program.

info
Generate any Info files needed.    The best way to write the rules is as follows:

info: foo.info

foo.info: foo.texi chap1.texi chap2.texi
 $(MAKEINFO) $(srcdir)/foo.texi

You must define the variable MAKEINFO in the Makefile.    It should run the makeinfo
program, which is part of the Texinfo distribution.

Normally a GNU distribution comes with Info files, and that means the Info files are
present in the source directory.    Therefore, the Make rule for an info file should
update it in the source directory.    When users build the package, ordinarily Make will
not update the Info files because they will already be up to date.

dvi
Generate DVI files for all Texinfo documentation.    For example:

dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi
 $(TEXI2DVI) $(srcdir)/foo.texi

You must define the variable TEXI2DVI in the Makefile.    It should run the program
texi2dvi, which is part of the Texinfo distribution.(1)    Alternatively, write just the
dependencies, and allow GNU make to provide the command.

dist
Create a distribution tar file for this program.    The tar file should be set up so that
the file names in the tar file start with a subdirectory name which is the name of the
package it is a distribution for.    This name can include the version number.

For example, the distribution tar file of GCC version 1.40 unpacks into a subdirectory
named gcc-1.40.

The easiest way to do this is to create a subdirectory appropriately named, use ln or
cp to install the proper files in it, and then tar that subdirectory.

Compress the tar file file with gzip.    For example, the actual distribution file for GCC
version 1.40 is called gcc-1.40.tar.gz.

The dist target should explicitly depend on all non-source files that are in the
distribution, to make sure they are up to date in the distribution.    See Making
Releases.   

check
Perform self-tests (if any).    The user must build the program before running the tests, but
need not install the program; you should write the self-tests so that they work when the
program is built but not installed.   

The following targets are suggested as conventional names, for programs in which they are
useful.

installcheck
Perform installation tests (if any).    The user must build and install the program
before running the tests.    You should not assume that $(bindir) is in the search
path.

installdirs
It's useful to add a target named installdirs to create the directories where files
are installed, and their parent directories.    There is a script called mkinstalldirs
which is convenient for this; you can find it in the Texinfo package.    You can use a
rule like this:

Make sure all installation directories (e.g. $(bindir))
actually exist by making them if necessary.
installdirs: mkinstalldirs
 $(srcdir)/mkinstalldirs $(bindir) $(datadir) \
 $(libdir) $(infodir) \
 $(mandir)

This rule should not modify the directories where compilation is done.    It should do nothing
but create installation directories.   

texi2dvi uses TeX to do the real work of formatting. TeX is not distributed with Texinfo.

Node: Install Command Categories, Next: , Prev: Standard Targets, Up: Makefile
Conventions

Install Command Categories
When writing the install target, you must classify all the commands into three categories:
normal ones, "pre-installation" commands and "post-installation" commands.

Normal commands move files into their proper places, and set their modes.    They may not
alter any files except the ones that come entirely from the package they belong to.

Pre-installation and post-installation commands may alter other files; in particular, they can
edit global configuration files or data bases.

Pre-installation commands are typically executed before the normal commands, and post-
installation commands are typically run after the normal commands.

The most common use for a post-installation command is to run install-info.    This cannot
be done with a normal command, since it alters a file (the Info directory) which does not
come entirely and solely from the package being installed.    It is a post-installation command
because it needs to be done after the normal command which installs the package's Info
files.

Most programs don't need any pre-installation commands, but we have the feature just in
case it is needed.

To classify the commands in the install rule into these three categories, insert "category
lines" among them.    A category line specifies the category for the commands that follow.

A category line consists of a tab and a reference to a special Make variable, plus an optional
comment at the end.    There are three variables you can use, one for each category; the
variable name specifies the category.    Category lines are no-ops in ordinary execution
because these three Make variables are normally undefined (and you should not define them
in the makefile).

Here are the three possible category lines, each with a comment that explains what it
means:

 $(PRE_INSTALL) # Pre-install commands follow.
 $(POST_INSTALL) # Post-install commands follow.
 $(NORMAL_INSTALL) # Normal commands follow.

If you don't use a category line at the beginning of the install rule, all the commands are
classified as normal until the first category line.    If you don't use any category lines, all the
commands are classified as normal.

These are the category lines for uninstall:

 $(PRE_UNINSTALL) # Pre-uninstall commands follow.
 $(POST_UNINSTALL) # Post-uninstall commands follow.
 $(NORMAL_UNINSTALL) # Normal commands follow.

Typically, a pre-uninstall command would be used for deleting entries from the Info directory.

If the install or uninstall target has any dependencies which act as subroutines of
installation, then you should start each dependency's commands with a category line, and
start the main target's commands with a category line also.    This way, you can ensure that
each command is placed in the right category regardless of which of the dependencies
actually run.

Pre-installation and post-installation commands should not run any programs except for
these:

[basename bash cat chgrp chmod chown cmp cp dd diff echo
egrep expand expr false fgrep find getopt grep gunzip gzip
hostname install install-info kill ldconfig ln ls md5sum
mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee
test touch true uname xargs yes

The reason for distinguishing the commands in this way is for the sake of making binary
packages.    Typically a binary package contains all the executables and other files that need
to be installed, and has its own method of installing them--so it does not need to run the
normal installation commands.    But installing the binary package does need to execute the
pre-installation and post-installation commands.

Programs to build binary packages work by extracting the pre-installation and post-
installation commands.    Here is one way of extracting the pre-installation commands:

make -n install -o all \
 PRE_INSTALL=pre-install \
 POST_INSTALL=post-install \
 NORMAL_INSTALL=normal-install \
 | gawk -f pre-install.awk

where the file pre-install.awk could contain this:

$0 ~ /^\t[\t]*(normal_install|post_install)[\t]*$/ {on = 0}
on {print $0}
$0 ~ /^\t[\t]*pre_install[\t]*$/ {on = 1}

The resulting file of pre-installation commands is executed as a shell script as part of
installing the binary package.

Node: Releases, Next: , Prev: Makefile Conventions, Up: Managing Releases

Making Releases
Package the distribution of Foo version 69.96 in a gzipped tar file named foo-69.96.tar.gz.
It should unpack into a subdirectory named foo-69.96.

Building and installing the program should never modify any of the files contained in the
distribution.    This means that all the files that form part of the program in any way must be
classified into "source files" and "non-source files".    Source files are written by humans and
never changed automatically; non-source files are produced from source files by programs
under the control of the Makefile.

Naturally, all the source files must be in the distribution.    It is okay to include non-source
files in the distribution, provided they are up-to-date and machine-independent, so that
building the distribution normally will never modify them.    We commonly include non-source
files produced by Bison, lex, TeX, and makeinfo; this helps avoid unnecessary dependencies
between our distributions, so that users can install whichever packages they want to install.

Non-source files that might actually be modified by building and installing the program
should never be included in the distribution.    So if you do distribute non-source files,
always make sure they are up to date when you make a new distribution.

Make sure that the directory into which the distribution unpacks (as well as any
subdirectories) are all world-writable (octal mode 777).    This is so that old versions of tar
which preserve the ownership and permissions of the files from the tar archive will be able to
extract all the files even if the user is unprivileged.

Make sure that all the files in the distribution are world-readable.

Make sure that no file name in the distribution is more than 14 characters long.    Likewise,
no file created by building the program should have a name longer than 14 characters.    The
reason for this is that some systems adhere to a foolish interpretation of the POSIX standard,
and refuse to open a longer name, rather than truncating as they did in the past.

Don't include any symbolic links in the distribution itself.    If the tar file contains symbolic
links, then people cannot even unpack it on systems that don't support symbolic links.   
Also, don't use multiple names for one file in different directories, because certain file
systems cannot handle this and that prevents unpacking the distribution.

Try to make sure that all the file names will be unique on MS-DOS.    A name on MS-DOS
consists of up to 8 characters, optionally followed by a period and up to three characters.   
MS-DOS will truncate extra characters both before and after the period.    Thus,
foobarhacker.c and foobarhacker.o are not ambiguous; they are truncated to foobarha.c
and foobarha.o, which are distinct.

Include in your distribution a copy of the texinfo.tex you used to test print any *.texinfo
or *.texi files.

Likewise, if your program uses small GNU software packages like regex, getopt, obstack, or
termcap, include them in the distribution file.    Leaving them out would make the
distribution file a little smaller at the expense of possible inconvenience to a user who
doesn't know what other files to get.

About Makertf
Makertf is a program that converts "Texinfo" files into "Rich Text Format" (RTF) files. It can be
used to make WinHelp Files from GNU manuals and other documentation written in Texinfo.

Makertf is derived from GNU Makeinfo, which is a part of the GNU Texinfo documentation
system.

Christian Schenk
cschenk@berlin.snafu.de

